Search results for "depth profile"
showing 5 items of 5 documents
Accumulation of radiation defects and modification of micromechanical properties under MgO crystal irradiation with swift 132Xe ions
2020
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. A.A. also acknowledges support via the project GF AP05134257 of Ministry of Education and Science of the Republic of Kazakhstan .
Novel method for determination of tritium depth profiles in metallic samples
2019
Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evo…
Depth profiles of aggregate centers and nanodefects in LiF crystals irradiated with 34 MeV 84Kr, 56 MeV 40Ar and 12 MeV 12C ions
2018
I. Manika, J. Maniks and R. Zabels acknowledge the national project IMIS2. A. Dauletbekova, A. Akilbekov, M. Zdorovets and A. Seitbayev acknowledge the GF AP05134257of Ministry of Education and Science the Republic of Kazakhstan.
Comparison of LIBS results on ITER-relevant samples obtained by nanosecond and picosecond lasers
2019
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Work performed under EUROfusion WP PFC.
Structure, tritium depth profile and desorption from 'plasma-facing' beryllium materials of ITER-Like-Wall at JET
2017
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053 . The views and opinions expressed herein do not necessarily reflect those of the European Commission.